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Abstract: The effect of inclined Riga plates and dust particle concentration on the temperature of an unsteady  

MHD Stokes flow of a dusty fluid was examined. The flow equations were derived and solved via explicit finite 

difference method following a similarity transformation. Simulations revealed that as the inclination angle of 

the Riga plates (𝜂) approaches 900, the temperatures of both fluid and dust particles increase. Additionally, 

an increase in dust particles’ concen- tration leads to a rise in flow temperature. 
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1.   INTRODUCTION 

A fluid containing small inert particles, typically disregarded in analysis, is referred to as a dusty fluid when these 

particles are also considered. In viscous flow, the presence of dusty particles is highly significant in industries such 

as petroleum and crude oil refinement. The mathematical theory of fluid flow through a porous medium was 

pioneered by Darcy [5]. From there henceforth, scientific and computational research on flows followed on. 

Ismail et al [5] investigated the unsteady Stokes flow of a dusty fluid between two parallel plates through a 

porous medium, with constant suction applied to the upper plate and injection to the lower plate. As per the 

study’s assumptions, the findings revealed that dust particles had a higher velocity compared to the fluid velocity. 

They did not analyze the temperature profiles of the individual components of the flow. Additionally, the plates were 

neither Riga plates nor inclined. A Riga plate is a flat surface that consists of electrodes and permanent magnets 

arranged in alternating manner to create a uniform polarity and magnetization. These plates generate electromagnetic 

forces when an electric current passes through them, which can influence the temperature, velocity and direction of 

fluid flow. Islam et al. [3] investigated micropolar fluid flow along an inclined Riga plate through a porous medium. 

Their study concluded that varying the inclination angle did not result in temperature changes. Igbal et al [2], explored 

an electrically conducting Riga plate in viscous nanofluid flow considering viscous dissipation, thermal radiation, and 

melting heat and proposed stagnation point flow over the Riga plate. Heat and mass transfer in MHD flow was 

explored by Onyinkwa et al[7] and Otieno et al [8]. In [7], It was established that The maximum temperature profile 

is obtained at an inclination angle. In [8], as the angle of inclination of magnetic field increases, the temperature of 

the flow also increases. Nasrin et al. [4] investigated dusty fluid flow between two parallel Riga plates within a 

porous medium, but they provided limited discussion on the impact of dust particle concentration and inclined 

plates on the flow’s temperature. This identified gaps served as the foundation for the current study. 

2.   PROBLEM FORMULATION 

Consider a flow of a dusty fluid between parallel Riga plates, which are inclined at an angle η from the horizontal plane. 

These plates are stationary and maintained at constant but distinct temperatures. The fluid is assumed to be viscous and 

incompressible, flowing along the x-axis, while the y-axis is perpendicular to the flow direction. The fluid flow is driven 

by a pressure gradient 𝑝. The presence of Riga plates induces a uniform magnetic force on the fluid. The following is a 

sketch of the physical concept of the problem. 
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Figure 2.1: Geometry of the physical problem 

Where; g is the force of gravity, 𝐵𝑜 is the inclined magnetic field and 𝜂 is the angle of inclination of the Riga 

plates. The boundary conditions for the flow are; 

𝑢 =  0, 𝑢𝑑  =  0, 𝑇 =  0, 𝑇𝑑  =  0, 𝑎𝑡 𝑦 =  −ℎ                                                                   (2.0.1) 

𝑢 =  0, 𝑢𝑑  =  0, 𝑇 =  1, 𝑇𝑑  =  1, 𝑎𝑡 𝑦 =  ℎ 

Subject to figure 2.1 and equation (2.0.2) the developed temperature and momentum governing equations are; 

𝜕𝑇

𝜕𝑡
=

𝑘𝑐

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑦2 ) +
𝜈

𝐶𝑝
 (

𝜕𝑢

𝜕𝑦
)
2

−
2𝑘𝑐𝐾𝑠𝑁𝑑

3𝜌2𝑣𝐶𝑝
 (𝑇 − 𝑇𝑑) +

𝑢𝜎

𝜌𝐶𝑝
 𝐵0

2⃗⃗⃗⃗  ⃗ 𝑠𝑖𝑛2 𝛾                                                  (2.0.2) 

𝜕𝑇𝑑

𝜕𝑡
=

2𝑘𝑐𝐾𝑠𝑁𝑑

3𝜌𝑣𝜌𝑚𝐶𝑠
 (𝑇 − 𝑇𝑑)                                                                                                                  (2.0.3) 

𝜕𝑢

𝜕𝑡
= −

1

𝜌
 
𝜕𝑝

𝜕𝑥
+ 𝜈 

𝜕2𝑢

𝜕𝑦2 + 
𝜋𝐽0𝑀0

8𝜌
𝑒

−𝑦𝜋

𝑙 + 𝑔 sin 𝜂 − 
u σ

ρ
 𝐵0

2⃗⃗⃗⃗  ⃗ 𝑠𝑖𝑛2 𝛾 −
𝜈𝑢

𝑘∗
− 

1

𝜌
𝐾𝑠𝑁𝑑(𝑢 − 𝑢𝑑)                (2.0.4) 

𝑚𝑑
𝜕𝑢𝑑

𝜕𝑡
= 𝐾𝑠𝑁𝑑(𝑢 − 𝑢𝑑)                                                                                                                 (2.0.5) 

where; 𝑢 is the velocity of the fluid particle, 𝑝 is the pressure of the flow, 𝐽𝑜 is the current concentration/density 

in the Riga plates electrodes. 𝑀𝑜 is the magnetic field effect created by the alternating permanent magnets on Riga 

plate and l is the distance between the electrodes, which is the width of the magnets, 𝜌 is the density of the fluid, 

electrical conductivity feature of the fluid is 𝜎, 𝛾 is the angle of inclination of the magnetic field, 𝐾𝑠 is the Stokes 

constant, 𝑁𝑑  is the number of dust particles per unit volume, 𝑚𝑑  is the mass of dust particles, 𝜈 =
𝜇

𝜌
 and 𝛿 is 

the electrical conductivity. 

2.0.1 Non-Dimensionalisation of the governing equation 

The main objective of Non-dimensionalisation is to set the solutions obtained in situation of a given set of conditions 

to be applicable to a geometrically similar environment but experiencing totally different conditions. The following 

parameters are used to non-dimensionalise the governing equations. 

𝑥̂ =
𝜋

𝑙
 𝑥,  𝑦̂ =

𝜋

𝑙
 𝑦, 𝑢 =

𝑙

𝜋𝑣
 𝑢, 𝑢𝑑̂ =

𝑙

𝜋𝑣
 𝑢𝑑  

𝑝̂ =
𝑙2𝑝

𝜋2𝜌𝑣2 , 𝑡̂ =
𝜋2𝑣

𝑙2
 𝑡, Θ =

𝑇−𝑇1

𝑇2−𝑇1
, Θd =

𝑇𝑑−𝑇1

𝑇2−𝑇1
                    (2.0.6) 
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The non-dimensionalisation of temperature equation terms for fluid and dust particles is as below  

𝜕𝑇

𝜕𝑡
=  

𝜕𝑇

𝜕Θ
 .

𝜕Θ

𝜕𝑡̂
.
𝜕𝑡̂

𝜕Θ
=  

𝜋2𝑣(𝑇2 − 𝑇1)

𝑙2
 
𝜕Θ

𝜕𝑡̂
                                     (2.0.7) 

𝜕𝑇

𝜕𝑦
=  

𝜕𝑇

𝜕Θ
 .

𝜕𝑦

𝜕y
.
𝜕Θ

𝜕𝑦
=  

𝜋(𝑇2 − 𝑇1)

𝑙
 
𝜕Θ

𝜕𝑦
                                        (2.0.8) 

𝜕2𝑇

𝜕𝑦2 =  
𝜕

𝜕𝑦 
 (

𝜕𝑇

𝜕𝑦
) 

𝜕𝑦

𝜕𝑦
=  

𝜕

𝜕𝑦 
 [

(𝑇2 − 𝑇1)𝜋

𝑙
 
𝜕Θ

𝜕𝑦
 ]

𝜋

𝑙
= 

𝜋2𝑣(𝑇2 − 𝑇1)

𝑙2
 
𝜕2Θ

𝜕𝑦2             (2.0.9) 

𝜕𝑇𝑑

𝜕𝑡
=  

𝜕𝑇𝑑

𝜕Θd
 .

𝜕𝑡̂

𝜕t
.
𝜕Θd

𝜕𝑡̂
=  (𝑇2  − 𝑇1).

𝜋2𝑣

𝑙2
.
𝜕Θd

𝜕𝑡̂
                                         (2.0.10) 

𝜕𝑢

𝜕𝑡
=   

𝜕u

𝜕𝑢̂
.
𝜕𝑡̂

𝜕t
.
𝜕𝑢̂

𝜕𝑡̂
=

𝜋𝑣

𝑙
 .

𝜋2𝑣

𝑙2
.
𝜕𝑢̂

𝜕𝑡̂
=  

𝜋3𝑣

𝑙3

𝜕𝑢̂

𝜕𝑡̂
                                               (2.0.11) 

𝜕𝑝

𝜕𝑥
=   

𝜕p

𝜕𝑝̂
.
𝜕𝑥̂

𝜕x
.
𝜕𝑝̂

𝜕𝑥̂
=  

𝜋2𝜌𝑣

𝑙2

2

.
𝜋

𝑙
.
𝜕𝑝̂

𝜕𝑥̂
=  

𝜋3𝜌𝑣2

𝑙3

𝜕𝑝̂

𝜕𝑥̂
                                         (2.0.12)  

𝜕𝑢

𝜕𝑦
=   

𝜕u

𝜕𝑢̂
.
𝜕𝑦

𝜕y
.
𝜕𝑢̂

𝜕𝑦
=

𝜋𝑣

𝑙
 .

𝜋

𝑙
 .

𝜕𝑢̂

𝜕𝑦
=  

𝜋2𝑣

𝑙2

𝜕𝑢̂

𝜕𝑦
                                                (2.0.13) 

𝜕2𝑢

𝜕𝑦2 =  
𝜕

𝜕𝑦 
 (

𝜕𝑢

𝜕𝑦
)  =  

𝜕

𝜕𝑦 
 (

𝜋2𝑣

𝑙2
 
𝜕𝑢̂

𝜕𝑦
)

𝜕𝑦

𝜕𝑦
=

𝜕

𝜕𝑦 
 ( 

𝜋2𝑣

𝑙2
 
𝜕𝑢̂

𝜕𝑦
)

𝜋

𝑙
  

𝜕2𝑢

𝜕𝑦2 =
𝜋3𝑣

𝑙3

𝜕2𝑢

𝜕𝑦2 
  

Substituting equation (2.0.7 - 2.0.9) into equation (2.0.2), equation (2.0.10) into equation (2.0.3) and  since 

(𝑇 − 𝑇𝑑) = (𝛩 − 𝛩𝑑)(𝑇2  − 𝑇1) then dividing the equations through by 
𝜋2𝑣(𝑇2 − 𝑇1)

𝑙2
 to obtain; 

𝜕𝛩

𝜕𝑡̂
=

𝑘𝑐

𝜌𝐶𝑝
 (

1

𝑣
) (

𝜕2𝛩

𝜕𝑦2) +
𝜈

𝐶𝑝(𝑇2 – 𝑇1)
  (

𝜕𝑢̂

𝜕𝑦
)
2

+
2𝑙2𝑘𝑐𝐾𝑠𝑁𝑑

3𝜌2𝑣2𝜋2𝐶𝑝
 (𝛩 − 𝛩𝑑) +

𝑢̂𝑙2𝜎𝐵0
2 sin2 𝛾

𝜌𝑣𝐶𝑝𝜋2(𝑇2 – 𝑇1)
                    (2.0.14) 

𝜕𝛩𝑑

𝜕𝑡̂
=

2𝑘𝑐𝐾𝑠𝑁𝑑𝑙2(𝛩−𝛩𝑑)

3𝜌𝜌𝑚𝑐𝑠𝜋
2𝑣2                     (2.0.15) 

𝜕𝑢̂

𝜕𝑡̂
=  −

𝜕𝑝̂

𝜕𝑥̂
+

𝜈

𝑣
 
𝜕2𝑢̂

𝜕𝑦2 +
𝑙3𝐽0𝑀0

𝜋2𝑣28𝜌
 𝑒−𝑦 +

𝑙3𝑔

𝜋3𝑣2 sin 𝜂 −
𝑙3𝑢̂𝜎𝐵0

2 sin2 𝛾

𝜋2𝑣2𝜌
−

𝜈𝑙3𝑢̂

𝑘∗𝜋
2𝑣2 −

𝑙3𝐾𝑠𝑁𝑑

𝜋2𝑣2𝜌
   (𝑢 −  𝑢𝑑)      (2.0.16) 

𝜕𝑢̂𝑑

𝜕𝑡̂
=  

𝑙3𝐾𝑠𝑁𝑑

𝑣2𝜋3𝑚𝑑
(𝑢 − 𝑢𝑑)                   (2.0.17) 

Where the Pertinent parameters generated include; 

Pressure gradient: −
𝜕𝑝̂

𝜕𝑥̂
= 𝐶 

Modified Hartman number:  
𝑙3𝐽0𝑀0

8𝜌𝜋2𝑣2 = 𝐻𝑟 

Dust concentration parameter: 
𝑙2𝐾𝑠𝑁𝑑

𝜌𝜋2𝑣
= 𝐺 

Eckert number: 
𝜈

𝐶𝑝(𝑇2 – 𝑇1)
= 𝐸𝑐 

Magnetic parameter:  
𝑙3𝜎𝐵0

2 sin2 𝛾

𝑣2𝜌𝜋2 = 𝑀 

Prandtl number: 
𝜌cpv

kc
= Pr    

Particle Mass Parameter: 
𝑁𝑑𝐾𝑠𝑙

3

𝑚𝑑𝑣2𝜋3 = 𝑆 
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Permeability parameter: 
𝜈𝑙3

𝑘∗𝜋
2𝑣2 =  𝐿 

Gravity parameter: 𝑅∗ = 𝑓 sin 𝜂 where 𝑓 =
𝑔𝑙3

𝜋3𝑣2 

Joule Parameter: 
𝑙2𝜎𝐵0

2 sin2 𝛾

𝑣𝜌𝐶𝑝𝜋2(𝑇2 – 𝑇1)
=  

Temperature relaxation time parameter: 
𝑘𝑐

𝑣𝜌𝑚𝑐𝑠
=

1

𝑄
 

Constant of viscosity: 
𝜈

𝑣
= 𝜉          (2.0.18) 

substituting the above parameters in the equations (2.0.7) and (2.0.8) gives 

𝜕𝛩

𝜕𝑡̂
=

1

𝑃𝑟
  (

𝜕2𝛩

𝜕𝑦2) + 𝐸𝑐 (
𝜕𝑢̂

𝜕𝑦
)
2

+
2𝐺

3𝑃𝑟
 (𝛩 − 𝛩𝑑) + 𝐽𝑢                                           (2.0.19) 

𝜕𝛩𝑑

𝜕𝑡̂
=

2𝐺(𝛩−𝛩𝑑)

3𝑄
                                                                                               (2.0.20) 

𝜕𝑢̂

𝜕𝑡̂
=  𝐶 + ξ 

𝜕2𝑢̂

𝜕𝑦2 + 𝐻𝑟  𝑒
−𝑦 + 𝑅 − 𝑢(𝑀 − 𝐿) − 𝐺𝑣−1(𝑢 − 𝑢𝑑)                          (2.0.21) 

𝜕𝑢̂𝑑

𝜕𝑡̂
=  𝑆(𝑢 − 𝑢𝑑)                                                                                           (2.0.22) 

3.  SOLUTION OF THE PROBLEM 

To solve the set of equations (2.0.19) and (2.0.20), explicit Finite difference method is used. This is because the method 

satisfies basic features of consistency, convergence and stability. 

The distance between the plates is 2 since the 𝑦min     =  −1 and 𝑦max  =  1. The horizontal axis (space variable) is sectioned 

into (N+1) intervals of equal ∆y length that is indexed by 𝑗 =  0, 1, . . . . 𝑁 and the vertical axis (time variable) divided into 

(𝑀 + 1) intervals of length ∆t indexed by 𝑘 =  0, 1, . . . 𝑀. The computations uses space and time points (j and k). The 

descretised form of equation (2.0.10) and (2.0.11) to solve for 𝜃 and 𝜃𝑑 at each grid point are presented below: 

Θ𝑗
𝑘+1 = Δ𝑡 (

1

Pr
[
Θ𝑗+1

𝑘 −2Θ𝑗
𝑘+ Θ𝑗−1

𝑘

Δ𝑦2 ] − 𝐸𝑐 [
𝑢𝑗

𝑘− Θ𝑗−1
𝑘

Δ𝑦2 ]
2

+
2𝐺

3Pr 
 ( Θ𝑗

𝑘 − (Θd)𝑗
𝑘) − 𝐽 u𝑗

𝑘) + Θ𝑗
𝑘                           (3.0.1) 

 

Θ𝑑
𝑘+1 =

2𝐺

3𝑄
Δ𝑡(Θ𝑗

𝑘+1 − (Θd)𝑗
𝑘) + (Θd)𝑗

𝑘                                                                                                     (3.0.2) 

 

u𝑗
𝑘+1 = [𝐶 + 𝜉 (

u𝑗+1
𝑘 −2u𝑗

𝑘+ u𝑗−1
𝑘

Δ𝑦2 ) − 𝑅 − 𝑢𝑗
𝑘(𝑀 + 𝐿) + 𝐻𝑟𝑒−𝑦 − 𝐺𝑣−1( u𝑗

𝑘+1 − (ud)𝑗
𝑘)] Δ𝑡 + u𝑗

𝑘           (3.0.3) 

 

(𝐮𝐝)𝒋
𝒌+𝟏 = 𝑺𝚫𝒕( 𝐮𝒋

𝒌 − (𝐮𝐝)𝒋
𝒌) + (𝐮𝐝)𝒋

𝒌                                                                                             (3.0.4) 

4.   RESULTS AND DISCUSSION 

Figure 4.1 illustrates the effect of inclining Riga plates on the temperature profile. As the inclination angle η increases 

towards 90◦, the parameter R also rises, as shown in Table 1, leading to a corresponding increase in temperature, as 

depicted in Figure 4.1. This behavior can be attributed to the rise in velocity with increasing η, which causes frictional 

heating. As fluid particles move past each other at higher velocities, the frequency of collisions and energy exchanges 

intensifies, resulting in a conversion of kinetic energy into thermal energy. This increased molecular activity raises 

the temperature within the fluid along the flow direction. 
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Figure 4.1: Effect of inclining Riga plates on temperature profiles 

Table 1: Angle η with corresponding values of R 

 

 

 

 

 

 

Figure 4.2 demonstrates the effect of an inclined magnetic field on the temperature of the flow. As the dusty 

fluid moves through the magnetic field, an electric current is induced due to the electromagnetic induction effect.  

This current encounters resistance within the fluid, leading to Ohmic heating. As the inclination angle γ approaches 

90◦, the generated current increases, amplifying Ohmic heating and consequently raising the temperature of the fluid. 

Additionally, Figure 4.2 shows that the temperature of the dust particles, Θd, also rises with increasing inclination 

angle γ. The dust particles interact with fluid particles undergo- ing Ohmic heating, allowing them to absorb heat 

from the surrounding fluid and, in turn, experience a temperature increase. 

 
Figure 4.2: Effect of Magnetic Inclination On Θ and Θd 

Figure 4.3 illustrates a general increase in flow temperature when the dust concentration (G) is increased an observation 

similarly made by [4]. This observation is attributed to the interactions between dust and fluid particles that lead to additional 

energy dissipation as heat. The friction and drag forces between fluid and dust particles convert kinetic energy into thermal 

energy henceforth increasing the temperature and lowering the velocity of the flow. 

ANGLE (η0) R=fsin(η)0 

150 0.25882 

300 0.50000 

450 0.70711 

600 0.86603 

750 0.96593 

900 1.00000 
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Figure 4.3: Effect of dust particle concentration on temperature profiles 

As observed in figure 4.4, there is a general increase in temperature of the flow. As the fluid flows through the 

channel, an increase in pressure gradient leads to higher flow velocities. The increased velocity results in increased 

frictional heating where the fluid and dust particles rub against each other and the channel walls hence the increase 

in flow temperature. 

 
Figure 4.4: Effect of C on u, ud, Θ and Θd 

The figure 4.5 presents the results of variation in values of modified Hartman number (Hr) from 0.5 to 1.5. Hartmann 

number is a dimensionless number defining relationship comparing electromagnetic force and viscous force.  The 

observation show the temperature of both fluid and dust particles increase as modified Hartman number Hr increases. 

This is caused by the resistance of the fluid to the flow of electrical currents induced by the magnetic field.  An 

increase in the modified Hartmann number increases the electrical currents and, consequently Ohmic heating in the 

fluid. There is heat transfer through collisions and interactions between the fluid and dust particles, leading to an 

increase in the temperature of the dust particles. 

Figure 4.5: Effect of modified Hartman number on u, ud, Θ and Θd 
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The temperature of the flow is seen to increase as permeability of the porous medium increases as visualized 

by figure 4.6. An increase in permeability allows for easier fluid flow through the porous medium. This increased 

flow rate leads to higher fluid velocities which in turn results in increased frictional heating. As the fluid moves 

through the porous medium more rapidly, it picks up more heat from the surroundings and transfer it to the dust 

particles suspended in it. 

Figure 4.6: Effect of permeability parameter (L) on u, ud, Θ and Θd 

Eckert number (Ec) is a dimensionless parameter in fluid dynamics and heat transfer that defines the relative importance of 

kinetic energy compared to heat content. As Eckert number increases as seen in figure 4.7, Kinetic energy of the fluid 

becomes more significant causing an increase in fluid velocity u. The kinetic energy is converted to thermal energy 

due to friction and drag forces. This generally increases the temperature of the flow as seen by increase in fluid 

temperature Θ and dust particles Θd. As the flow’s temperature rises it increases thermal drag on dust particles [1, 6, 

9]. 

Figure 4.7: Effect of Eckert number on temperature of fluid and dust particles. 

Figure 4.8 illustrates that an increment in dimensionless Prandtl parameter results to a slight rise in temperature (Θ 

and Θd ). Prandtl number relates momentum diffusivity of a fluid to its thermal diffusivity. As Pr increases, it indicates 

that thermal diffusivity is relatively lower compared to momentum diffusivity. This translates to fluid particles 

transferring momentum more efficiently than heat hence a general low rise in temperature of the flow.  
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Figure 4.8: Effect of Prandtl number on temperature profiles 

5.   CONCLUSION 

The effects of Riga plates and magnetic field inclination on the temperature profile in the unsteady 

magnetohydrodynamic (MHD) Stokes flow of a dusty fluid have been analyzed. The system of governing equations 

was solved using the explicit finite difference method. The results show that the temperature of both the fluid and dust 

particles increases with rising inclination angle (η), magnetic inclination angle (γ), and dust particle concentration 

(G). Furthermore, an increase in the pressure gradient (C), modified Hartmann number (Hr), Eckert number (Ec), 

and Prandtl number (Pr) leads to a corresponding rise in flow temperature. 
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